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The non-linear interaction of two disturbances in the 
thermal convection problem 

By LEE A. SEGEL 
Rensselaer Polytechnic Institute, Troy, N.Y. 

(Received 13 March 1962) 

In  the thermal convection problem with free boundaries, the interaction of two 
‘roll’ disturbances is considered. The problem is reduced to a pair of non-linear 
ordinary differential equations, which should also provide a model for the inter- 
action of two disturbances in more general situations than that for which these 
equations have been derived. The equations contain several parameters which 
necessitates a discussion of various possible types of solution. Some representa- 
tive results are: ( 1 )  under certain circumstances, an equilibrium state may be 
composed of a mixture of a linearly stable disturbance and a linearly unstable 
disturbance; (2) for the thermal convection problem, when the Rayleigh number 
is slightly above the minimum critical value, the equilibrium state will contain 
only one of two linearly unstable disturbances. These and other results are 
compared with experimental observations. 

1. Introduction and principal conclusions 
If a horizontal layer of fluid is slowly heated from below, when the Rayleigh 

number reaches a certain critical value it is a classical result of the linear theory 
of hydrodynamic stability (Pellew & Southwell 1940) that the original state of 
no motion and a linear temperature gradient becomes unstable and a cellular 
motion ensues. Linear theory incorrectly predicts that the velocities will increase 
exponentially with time and cannot predict which of an infinite number of 
possible cell shapes, all with the same amplification rate, will occur. Recent 
non-linear analyses, however, have provided a good understanding of the first 
point and at  least a start on understanding the second. (See, for example, Malkus 
& Veronis 1958 and Segel & Stuart 1962.) 

As soon as the critical Rayleigh number is exceeded, which it must be-even 
if slightly-in any physical situation, linear theory allows each of the previously 
mentioned cell shapes to occur in a continuous spectrum of sizes and correspond- 
ing amplification rates. Unlike the non-uniqueness at the critical Rayleigh num- 
ber, the non-uniqueness of the type found when the critical Rayleigh number is 
exceeded occurs in all stability problems. For example, there is a spectrum of 
linearly unstable disturbances in flow between rotating cylinders when the critical 
Taylor number is exceeded and in boundary-layer flow when the critical Reynolds 
number is exceeded. Nevertheless, in the Rayleigh and Taylor cases the spectrum 
of the disturbance appears to contain a single sharp peak at  a certain wavelength. 
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What apparently happens is that the non-linear terms somehow act to damp all 
but a very narrow band of the linearly unstable disturbances. 

It is one of the priniipal objects of this paper to make a start towards explain- 
ing how this comes about by considering the non-linear interaction of two dis- 
turbances both of which are unstable by linear theory. (We also briefly consider 
interactions when one or both disturbances are linearly stable.) The central part 
of the analysis is a general discussion of the various types of behaviour possible 
for solutions to a pair of coupled non-linear ordinary differential equations (2.15 a, 
b). These equations are a model for the interaction of two unstable disturbances 
in situations where the dominant effect is alteration of the disturbances’ initial 
exponential growth in time, so that the results should apply to a variety of 
physical situations (see Stuart 1961). Let us emphasize, however, that in this 
paper the equations (2.15a, b)  are rigorously (though formally) derived by apply- 
ing a certain expansion procedure to the equations of the thermal instability 
problem. The disturbances are specified to be ‘rolls’ periodic in one horizontal 
direction and independent of the perpendicular horizontal direction, so that the 
cell-shape non-uniqueness problem is by-passed. Both horizontal boundary 
planes are taken to be free surfaces; this physically unrealistic assumption greatly 
simplifies the calculations. As is usual in thermal instability problems, the results 
are expected to have qualitative significance. 

We first consider disturbances which are (exponentially) unstable by linear 
theory, but which ultimately approach a finite amplitude equilibrium. According 
to the general non-linear analysis, when two such disturbances interact it is 
possible that one of them decays to zero while the other approaches an equilibrium 
value. Which of the two disturbances decays in spite of being linearly unstable 
may be completely determined by the parameters of the problem, or may also 
depend on the initial amplitudes of the two disturbances. The only other possible 
equilibrium state for the model considered is composed of both disturbances, but 
this ‘mixed’ state will not occur if either of the interacting disturbances can 
ultimately decay to zero for some initial condition. 

A mixed state may occur even if one of the two interacting disturbances is 
linearly stable. The reason is that for certain values of the parameters the growth 
of the originally unstable disturbance alters the sign of the growth rate of the 
originally stable disturbance. As explained below, there is some evidence to 
support a conjecture that this type of interaction may play a role in transition to 
turbulence. 

These general results are applied to the thermal convection problem at various 
values of the Rayleigh number. For the most important situation to which our 
analysis applies, when the actual Rayleigh number is slightly above the minimum 
critical Rayleigh number of linear theory, it is shown that the mixed equilibrium 
state cannot occur. (This provides a first theoretical model illustrating the experi- 
mental fact that the non-linear terms appear to select for amplification one of 
the continuum of linearly unstable disturbances.) When the differences between 
the actual Rayleigh number and the critical Rayleigh numbers for each of the two 
disturbances are not too far apart, the initial conditions must be used to deter- 
mine which disturbance decays to zero. 
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2. Mathematical formulation 
We shall use the following notation and dimensionless variables: d is the dis- 

tance between two horizontal planes bounding a fluid of mean density p, g is 
the acceleration of gravity (taken to act vertically downwards) and a0, v and K 

are the coefficients of thermal expansion, kinematic viscosity and thermal con- 
ductivity, respectively. The dimensionless horizontal co-ordinates x and y 
and vertical co-ordinate z refer to the length d ;  similarly the corresponding velo- 
cities (u, v, w) ,  the temperature 8, and time t refer to the scales K / d ,  ~ v / a , g d ~  
and # / K .  As is usual, we employ the Boussinesq approximation. A careful 
justification of this practice can be found in Spiegel & Veronis (1960). We restrict 
our consideration to two-dimensional ‘rolls ’ so v = a/ay = 0. After some manipu- 
lation, as in Malkus & Veronis (1958), the equations can be written 

u, + w, = 0, (2.1) 

T,-T,, = - (Z),, ( 2 . 2 )  

? -AT = -wT,-uT,-wT,+(wT),, (2.3) 

(slat - C T ~ )  aw - CT~, = (uu, + wu,)xz - (uW, + ww,)xx, (2.4) 

where A = a2/ax2+ a2/ay2, CT is the Prandtl number V / K ,  and subscripts denote 
partial differentiation. The horizontal bar indicates an average in x, 

and the temperature 8 has been split into a mean and a fluctuating part: 

8 = T + T ,  where T = T, = 0, so 8 = T. (2.6) 

The boundary planes at  x = 0 and z = 1 are considered to be free surfaces (so 
that the normal velocity and tangential stress vanish) and perfect conductors. 
This gives the boundary conditions 

T = uy = w, = 0 on z = 0, l .  (2.7) 

If the top surface is kept at  the temperature 
the equations admit the steady solution 

and the bottom at Th, Th > q, 

(2.8) = w = T = 0, T T@O) = - 9 2 ,  

where 9 is the Rayleigh number / 3 0 a o g d 4 / ( ~ ~ )  and Po denotes the linear tempera- 
ture gradient Po = (Th-T,)/d. (2.8) is the undisturbed solution which we 
perturb. Since the boundaries are held at constant temperature, we complete 
the perturbation boundary conditions by 

T-T(OO) = 0 at  z = 0, l .  (2.9) 

We now make a harmonic analysis of the temperature and velocity fluctuations, 
writing 

q = Ql0 cos nax + qol cos npx + qll cos n(a + p, x 
+ ql-l cos 7f(a - p) x + q20 cos 2nax + qo2 cos 2npx + . . . , (2.10) 
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where q stands for w and T, and a and /3 characterize the two interacting dis- 
turbances. The wii and qi are functions of z and t only. A similar series for u 
follows from the series for w and the continuity equation (1.1) 

- 7ru = a-l(wlo)z sin 7rax + p-l(wol)zl sin 7rpx + . . . . (3.11) 

(An equivalent formulation involves sine series for w and T.) 
The series (2.10) and (2.11) arise as follows: If we contemplate an initial un- 

stable disturbance composed of two different fundamental wave-numbers, A, and 
A, say, the primary interaction of the A, and A, components with themselves and 
with each other (from terms like uT, and wu,) gives rise in general to four new 
components of wave-numbers 2A,, 2A,, A, + A,, A, - A,, and to alterations in the 
mean motion. A secondary set of interactions reproduces the fundamentals 
and introduces 14 new components such as A, + 3A,, a tertiary set introduces 
many more new components, etc. In  the problem which we consider, disturbances 
are initially so small that no interactions whatever need be considered. The 
disturbance amplitudes then increase exponentially according to linear stability 
theory until certain secondary interaction terms become comparable to the 
group of linear terms. Higher-order interaction terms are here comparatively 
insignificant and will be seen to remain so, for the disturbance amplitudes ap- 
proach constant values. It will thus turn out that we need never consider the 
terms indicated by ... in (2.10) and (2.11). 

To continue with the formalism, we assume 

qij = q,j(ii)AiBi + q .  .(i+%i)Ai+,Bi + q .  L3 .(i,i+,)AiBi+2 + ..., (2.12) a3 

T = T('J0) + T(2") A2 + T("2)B' + . . . , (2.13) 

where q again stands for w or T, the and T(mn) depend only on z, and A and 
B (whose physical meaning is discussed below) depend only on t .  Four comments 
will clarify (2.12) and (2.13). (1) It will be helpful to remember that q$y) 
multiplies AmBn cos7r(ia+j/3). (2) In order that the first few terms of (2.12) and 
(2.13) give a good approximation to the answer, we must limit ourselves to 
functions A and B of small maximum absolute value. If squares and products of 
A and B are disregarded altogether 

w = A(t)  W$;")(Z) cos ~ C L X  + B(t) W~?"(Z) cos ~ P X ,  
T = A(t)  Tit") (z) cos + B(t) T~;''(z) cos ~ T P x ,  

so that one may think of A(t)  and B(t) as registering the approximate change with 
time of the a and /3 fundamentals. (3) For this problem, one can show that the 
corrections to qii and T are higher in order than the basic approximation by even 
powers of A and of B (e.g. q$+l,i) = q$$i+l) = 0) .  (4) Expansions (2.12) and (2.13) 
are simply a formalization of the successive interactions point of view discussed 
under (2.11). 

The method of Stuart (1958) and Watson (1960) also requires series expansions 
of A and B (* = d/dt )  

(2.14) 
A = @')A + d30)A3 + d12)AB2 + . . . , 
B = b(O1)B + b(21)A2B + @33)B3 + . . . . 
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Since the explicitly written terms are all that it will prove necessary to consider, 
we often use a simpler notation for the constants a(ij) and bcij), writing the equa- 
tions for A and B as 

A = aA-A[alA2+a2B2]+ ..., B = bB-B[blA2+b2B2]+ .... (2.15a,b) 

Choice of the expansions (2.14), the keystone of the Stuart-Watson method, is 
justified by the fact that it enables one to find a meaningful formal solution to 
the problem under consideration. The choice of (2.14) may be explained as follows. 
We wish to base our non-linear analysis on the linear analysis. Not only is this 
mathematically convenient, but it is suggested by experimental evidence: in 
situations of the type we are investigating the flow closely resembles that pre- 
dicted by linear instability theory except that the disturbance amplitude does not 
continue to grow exponentially but levels off to a constant value. It is perhaps 
'natural' to try an expansion of the form 

A = (linear theory A )  + (small corrections). (2.16) 

But (2.16) is inappropriate because the linear theory A,  exp (at), grows exponen- 
tially so that the correction must become large if A is to remain small, as is re- 
quired for convergence of (3.12) and (2.13). What result of linear theory, then, 
can be expected to have a small correction when the non-linear terms are con- 
sidered? The coefficient a is what we are looking for. If the Rayleigh number is 
sufficiently close to its critical value, linear theory shows that a is initially small. 
Speaking roughly, we expect a to be given by some function of A which ultimately 
approaches zero, so that the amplitude factor exp (at) will approach a constant as 
required for an equilibrating disturbance. More precisely if A = exp (at) then 
A/A = a so we expect that in the course of time, A/A will change from the small 
value a to zero, and will therefore remain uniformly small. Given this idea, the 
exact form of (2.14) follows from close examination of the equations (see also 
Watson 1960). 

We proceed with the calculations by substituting (2.12), (2.13), and (2.14) 
into (2.1) to (2.4). Using trigonometric identities we equate to zero the coeffi- 
cients of AiBj cos n(ma + np) x and obtain an infinite set of ordinary differential 
equations for the functions (of x )  wiyn), Ti?"") and T(mn). We write here the equa- 
tions for AiBj to the third order. For simplicity we make the abbreviations 

q4, q Y  = q 5 ' }  (2.17) q y  = 91, q6Y' = q27 q$2io2O0' = q3, qhi2' = 

q 4 3  = qc, ql;O' = q7, qii2) = qa, q p  = qg, qh;3' = (110, 

(where q again. stands for T or w) and 

T(20)., Tl,T(02) = T 2' (2.18) 

During the course of the calculation, however, the original symmetric and 
meaningful notation of (2.1)-(2.14) proved valuable in guarding against errors 
and in keeping in mind the origin and meaning of the various terms. With the 
further abbreviations 

L(a,a; n) = aTn-Da(Tn)-9wn, D J T )  = T"-n2a2T,  

M(a ,  a; n) = a r l D a ( w n )  - Di(wn) + n2a2Tn, = d/dz, 
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O(A2B cos ~ , t ? x ) :  L(2a + b, p; 9)  = blT2 - T;w,  - +[a(. + P)-l Tlwg 
+ a(a - /3)-l Tlwk 

+ (a+P)a-lT,~;+ (.-/3)~-‘ 
x w; + T;  w1 + Tk w1 + Ti  w! 

+ T; we1 , 

-w 1 w!” 6 + (pz- 2ap) w1 w b 1 7  

+ &4(a + /3-1 [w; w; - w1 w; 

+ (p2 + asp) w1 w;] 
+ (/9/2a) [ - w;w; + w:‘ w5 

+ ( p 2  + 2.P) w; w, + w; w: 

~ M ( 2 a + b ; / 3 ;  9 )  = b1D,j(w2)-$/3(a-/3)-l [ w ~ w ;  

- wy w6 - (p2 - zap) w; w6] ; 

I O(B3 cos T ~ x ) :  L(3b, /3; 10) = b2T, - TLw, - i(&T2w; + 2T4w; 

+ T;w,  + TLw,), 

vM(Sb,P;  10) = b2Dg(w2) + &(W;W;- w,w[) 
+ pp2wW,w; - &(WLW,“ - w: w4) 

+ +p”w;. w4. 

(2.29) 

(2.30) 

From (2.7) and (2.9) the boundary conditions are 

T, = w, = w i  = 0 a t  z = 0 , l  (n = 1, ..., 10) T, = T, = 0 at  z = 0, l .  
(2.31) 

To avoid writing factors of ~ 4 ,  let us define a modified Rayleigh number 

9’ = T - 4 9 .  (2.32) 

No confusion should result from calling both w’ and ,9Z ‘the Rayleigh number’ in 
qualitative contexts. 

The main problem of linear stability theory is to find the lowest values of the 
Rayleigh number permitting a non-trivial solution of (2.19) for a = 0, the case 
of neutral stability. From the standard work on linear theory (Pellew & Southwell 
1940) Rayleigh’s result for the neutral stability curve is given by 

91 = q a 2 +  113.  

This curve is plotted as a solid line in figure 1. Points above the curve correspond 
to growing disturbances, and for a given a the Rayleigh number dividing grow- 
ing from decaying disturbances is called the critical Rayleigh number for that a. 
The minimum critical Rayleigh number is B‘ = 27/4 for a2 = 3. ‘Critical’ will 
always stand for ‘critical according to linear theory.’ 

We consider the Rayleigh number and two different unstable disturbance 
wave-numbers, a and ,8, to be given. For our series to converge, a and ,8 must be 
chosen so that both the corresponding critical Rayleigh numbers, 9; and 9;, 
are close to the given Rayleigh number (see (4.3) and 3.3)). This limits a and /3 
to values such that (a,9’) and (p, 9’) fall above the critical curve but below a 
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vertically translated curve like the dashed one shown in figure 1. A possible set 
of values for a,  p and W’ is indicated on the figure. 

We have assumed the undisturbed state (2.8) to be one of no motion and alinear 
temperature gradient. Under ordinary experimental conditions, 92’ would 
therefore have to be chosen just a little greater than 2714, its minimum critical 
value. When W’ - 2714 is not small, our analysis is formally valid provided that 
a and B are restricted in the way described in the previous paragraph. For (2.8) to 

I 
I 
I 
I 
I 
I 

\ ’  

(Wave-number)a 

FIGURE 1. Values of a, /I, and for which the analysis is valid. 

be the correct undisturbed state, however, even infinitesimal disturbances must 
be avoided until the a and disturbances are excited. This is impossible in an 
actual physical situation, but might be achieved in a thought-experiment by 
using a conducting fluid and shutting off a stabilizing magnetic field at  the same 
time that the two desired disturbances were artificially stimulated. We therefore 
shall not restrict our consideration to values of 92’ just above 27/4, the preceding 
remarks indicating that the results for larger values of 9’ might give information 
about possible qualitative behaviour. 

3. Solution of the equations 

of linear stability theory. We have 
We turnto thesolutionofequations (2.19)-(2.30). Solving (2.19) is the problem 

} (3-1) 
w1 = 2 sin m, 

w, = 2 sin m, 

Tl = 7 7 2 ~ ~  sin m, 

T2 = n27, sin m, 

71 = Z%’/(a’ + a2 + I), 
7 2  = 2W‘/( b‘ +B2 + l), 

where a’ E r 2 a  is found from 

92’ = a-2(a2+ 1) (a’+a2+ 1) (a’(T-1+a2+ 1). (3.2) 
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Since we assume 9” -21 is small, it will be possible to ignore (9’ - 99:)”  and
to obtain from (3.2)

a’ = c7a2(9i?’  - S?L)/(f.7+  1) (a” + 1)2

I
(3.3)

and similarly b’ = q8”(9’ - %?;)/(a  + 1) (/3” + 1)2.

We can also ignore a’ in r1 and b’ in TV. There are solutions to (2.19) and (2.20)
proportional to sinnnz,  n a positive integer, but the solution with n = 1 has the
lowest critical Rayleigh number. The factor multiplying sin zz in both w1 and w2
has for convenience been taken to be 2. Since w1 and w2 are multiplied by the
still-to-be-determined quantities A and B, these factors may be chosen in any
convenient way.

On substitution of the above expressions for wl, w2, T,, and T,, the right-
hand sides of (2.21) and (2.22) reduce to zero. Since 9” is nearly an eigenvalue for
a and p, not 2a and 2p the only solution to these equations is

T3 = T4 = w3 = w4 = 0,

in agreement with the statement in Malkus & Veronis (1958) that there is no
second-order distortion to the velocity field of a single roll. The right-hand sides
of (2.23) and (2.24) do not reduce to zero, however, so that the two rolls interact
to produce second-order fluctuations of wave-numbers equal to the sum and dif-
ference of the original wave-numbers. The amplitudes T5, T6, uyB and wg turn out
to be given by the formulas

2q3D,T5 = n-[(,8-  CC) (a~~ - ,!3~~) c: - 294!‘~+(/3~  - CZ~)~] sin 27~2,

2dD2 T6 = nw + a) (ml + /h2) cij - 29?‘a-1(/32  - CX~)~] sin 27r2,

2WlW5  = n[(B- I(a cm1 - PT~)  (a + 8)” - 2c,+(p2 - a”)21 sin 2nz,
’ (3.4)

2a/3D2w, = n[(P+a) (cu~+,&~) (a-/3)2+ 2~,a-~(P~--a~)~]  sin 27~2,

where cl = (a+/3)2+4,  c2 = (a-/3)2+4, D, = (cc+/~)~~‘-c;,

D, = (~-/3)~3?‘-c;. I

The change in the mean temperature profile is easily found by solving (2.25)
and (2.26). Using the fact that a and b are negligible compared to 27r2,

T, = - &rr2  sin 27r2, T, = - &n-r2  sin 2nz.

This completes the solution of the second-order equations.
We now find that everything on the right-hand side of the third-order equa-

tions (2.27)-(2.30) is known except for the four constants al, a2, b,, b,-one in
each equation-arising from (2.15). These constants can be determined uniquely
in a manner carefully explained by Watson (1960). The general idea can be ex-
pressed as follows: we are dealing with problems of the type

-u?l) + hl = F, (3.5)

where L is a self-adjoint differential operator, k is a constant, F is a known func-
tion, and certain homogenous boundary conditions are to be imposed. L, k and
P all depend on a small parameter a. For example, (2.27) has the form of (3.5).
(In the present discussion, each of (2.19)-(2.30) will be considered an inhomo-
geneous equation for the appropriate w, T having been eliminated.) Let c$,
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denote the orthonormal set of eigenfunctions, and h, the corresponding eigen-
values, of the related problem

Lo($) + @ = 0, (3.6)
where the subscript in L,, denotes the fact that a has been set equal to zero in L.
A standard way to solve (3.5) is to expand the known function F and the unknown
function y in series of the 4,‘s

Y = EC, A, F = =L&> C, = (F, 9,). (3.7)
On substitution of (3.7) into (3.5) we find that if

c, = Gl@-u, (3.8)
then y = %,$,+-O(a),  since L,(r$,)  = -A,#,+ O(a). We now observe that, in
the problem we are dealing with, I% approaches one of the A,, say h,, as a + 0.
(For example, as a -+ 0 the difference between (2.19) and the homogeneous
part of (2.27) approaches zero, so h, represents the eigenvalue L% of (2.19)
with eigenfunction wr.) We require that our solution remain finite as a -+ 0.
(This is the key point; for our problem it is clear that no singularities should
occur as we approach the point of neutral stability, a = 0.) From (3.8), the
finiteness requirement gives

limC, = lim (F,q5N) = 0, (3.9)
CA-0 a+0

or, for (2.27), (lim F, lim wl) = 0, (3.10)
a+0 U-+0

where ( , ) denotes the appropriate inner product

(.A 9) = S,l f(4 g(4 fh

The unknown constants a, and a2 are thus determined to order one as required,
by putting (2.27) and (2.28) into the form (3.5) and imposing (3.10). For b, and 6,
we use (2.29) and (2.30) with wa instead of w1 in (3.10). The approach given here
can easily be generalized: for example, if L in (3.5) is not self-adjoint, we merely
use the bi-orthogonality property to find C, and replace #N in (3.9) by the function
#A satisfying the equation and boundary conditions adjoint to (3.6) when h = h,.

Ignoring the small quantities a and b compared to unity (cf. (3.3) and the
material preceding it), the values obtained for the constants are as follows:

al = b, = y, where y = &r/( 1 + c), (3.11)

a2 = yk’
[
l- A&&], b, = +2j;$y)l)2]’ t3.12)

li' = WP)"[(P2+  l)/(a"+ 1)12, (3.13)
Q1 = JQcr-‘(a2+  1) (3+a~-2a~)-&zq3~~]-W~[cr-~(a~i-  1) (3+$+2@)

+Ij@72]+cL(76-T75),  (3.14)
Qz = - JJKJ+(/~~  + 1) (3 + p” - 2c$,  - &z~T~]  + w,[r1(/J2 + 1) (3 + p” + 2q3)

+ 8@~21-/%5+~& (3.15)
W,sin27rrrz  = [(a-/?)/(a+P)]w,,  &sin2mz = [(a+P)/(a--/?)]w~,  (3.16)

r,sin 2nz = (a--P)  T5, r,sin 2nz = (a+,?) TB.

For wg, wg, T5 and TB see (3.4); for TV and r2 see (3.1).
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4. The nature of the amplitude functions
Since the right-hand aides are now completely known, we could proceed with

the solution of (2.27)-(2.30),  but we turn instead to the more informative in-
vestigation of the nature of the solutions to (2.15). For arbitrary constants c1
and c2, this pair of equations admits the special solutions

A = 0, B = ebt[c2+ (b2/b)e2”]-3, (4.1)
and B s 0, A = ed[cl + (al/a)  e2at]-*, (4.2)

which show how the non-linear terms can cause the equilibration of a disturbance
which grows exponentially by linear theory. (In (4.1), for example, B(t) -+ (b/b,)*
as t -+ co.) This phenomenon was first treated by Landau and is discussed in Lan-
dau & Lifschitz (1959, pp. 103-5).  An independent investigation, and the first
proceeding explicitly from the Navier-Stokes equations, was carried out by
Stuart (1958).

We are here interested in the interaction of two disturbances so the special
cases (4.1) and (4.2) are not of primary interest. It is not in general possible
to solve (2.15) exactly, so we turn to an examination of the equilibrium points
and their stability. From this we shall be able to obtain the desired qualitative
behaviour of two interacting disturbances.

For the first part of the discussion, we shall consider (2.15) from a general
point of view; later we shall see which of our results apply when the coefficients
are determined by the formulas of the previous section. Setting A = 2 = 0
we obtain the following possible equilibrium points for (2.15):

I :  A=B=O;

II: A = 0, B2 = b/b,;

III: B = 0, A2 = a/a,; >

IV: A2 = (a,b - ab,)/(a,b, - a,b,) s <2,

B2 = (ab,-a,b)/(a,b,-a,b,) E q2.

(4.3)

The equilibrium value of A(t) in III would occur if no B disturbance were present.
As it should, the value obtained here, using (3.3) and (3.11),  checks with the
formula for E in the corresponding part of the steady-state non-linear analysis
of Malkus & Veronis (1958, pp. 235-5). The same check was obtained earlier in
some unpublished work by J. Watson.

To examine the behaviour of solutions near the four groups of equilibrium
points, we definenewvariables Ai, Bi ; i = 1,2,3,4; by translating the axes without
rotation so that each equilibrium point in turn becomes the origin. Linearizing
we obtain the following equations in the neighbourhood of the various equili-
brium points

I :  A, =  aA,, I?, = bB,; (4.4a)
II: A, = b;l(ab,-a,b)  A,, B, = - 2bB,; (4.4b)

III:  A, = - 2aA,, I& = -a,-l(ab,-a,b)B,; (4.4c)
I V :  A, =  -2a,[2A,-2a,&$3,,  B4 =  -2b,&,~A,-2b,~~B,. (4.4d)
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For I, therefore, if either a or b is positive, A = B = 0 is an unstable equilibrium 
point. We will assume throughout this section that 9 is greater than both the 
critical values 92, and 9/ so that a and b are both positive-cf. (3.3)-and the 
origin is an unstable node. Turning to 11, for these equilibrium points to exist 
b, must be positive, for if this were not the case, I1 in (4.3) shows that the 
equilibrium point would be imaginary. The same conclusion can be reached by 
observing that with A = 0, b > 0, and b, < 0, there are no stabilizing terms in 
(2.15). As higher-order terms would otherwise have to be considered we further 
limit ourselves in this section to cases where b, > 0. Hence I1 is a stable node if 
ab,-a,b is negative and a saddle (unstable) point if this quantity is positive. 
The same discussion holds mutatis mutandis for 111. In particular, we assume 
a, > 0. For IV, a little more analysis is necessary, as in Andronow & Chaikin 
(1949, pp. 184-93). We find that IV is a stable node if b,a, - u1 b, is negative and a 
saddle point if this quantity is positive. This result, like those preceding, holds 
no matter which of the two roots we take in solving for A and B in (4.3). We 
note here that standard theorems show that, for our problem, examination of the 
linear equations (4.4) gives the correct local behaviour of the original non-linear 
system. Also, due to the existence of the special solutions (4.1) and (4.2), the only 
possible limit cycle would be one encircling IV when it is a node. But, as we see 
below, if a node exists i t  is stable so that any limit cycle would be unstable and 
therefore of no real interest. 

Suppose that both I1 and I11 are stable. We then have from (4.4) 

ab,-a,b < 0, ab,-a,b > 0, or a, > (a/b)b,, b, > (b/a)a,. (4.5) 

On multiplying together the last two inequalities (the right-hand sides of which 
are positive) we obtain 

a2bl > b,al. 

Equations (4.5) and (4.6) show that in (4.3) t2 and are indeed positive so that 
IV exists, but (4.6) also implies from the stability analysis just given that I V  is 
a saddle point. The situation is illustrated in figure 2. One-quarter of the ( A ,  B)- 
plane is shown; the remainder can be obtained by reflexion in the A and B axes. 
A t  each equilibrium point I ,  I1 and 111, one trajectory (solution curve) approaches 
vertically and all others horizontally, or vice versa. What happens in a particular 
case can easily be worked out, as in Andronow & Chaikin (1949, p. 184-93). This 
type of analysis also shows that the slope of the line along which a trajectory 
approaches the saddle point IV is positive for all permissible values of the coee- 
cients. We see that trajectories starting near the origin approach either I1 or 
111, depending on the initial mixture of A and B near I. The dividing case is the 
unstable trajectory leaving I and approaching the saddle point IV. 

We have discussed the case when both I1 and I11 are stable, and the other pos- 
sible cases are easier to understand. Altogether, only the following situations can 
occur when a ,  6,  a,, and b, are positive: 

(4.6) 

(1) I1 unstable, I11 unstable, if I V  exists it is stable; 
(2) I1 stable, 111 stable, I V  cannot exist; 
(3) I1 unstable, I11 stable, IV cannot exist; 
(4) I1 stable, I11 stable, IV exists but is unstable. 
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Let us call an equilibrium solution containing only one wavelength and its har- 
monics apure state; if other wavelengths are present we will speak of a mixed state. 
We may then summarize the whole situation as follows. We consider a class of dis- 
turbances each of which separately grows exponentially when infinitesimal but 
then approaches a finite-amplitude equilibrium. (Equivalently, we consider 

A 

FIGURE 2. The interaction of two linearly unstable disturbances in which one 
disturbance decays to zero. 

a, b, a, and b, to be positive.) When two such disturbances interact, i f  a pure state 
can occur then a mixed state cannot occur. (A state cannot occur physically unless 
it is stable.) Experimentally, when the Rayleigh number is above the critical 
and a whole band of wavelengths is unstable, the equilibrium state, nevertheless, 
seems to be very nearly pure. To show exactly how the non-linear terms bring this 
about does not yet seem feasible, but the above result gives a first indication of 
how the non-linear terms can single out a single unstable wavelength for equili- 
bration. 

5. Further general discussion of the amplitude functions 
We have been discussing the possible fate of two disturbances which are linearly 

unstable, i.e. unstable by linearized theory. Let us consider for a moment 
whether the non-linear theory shows anything of interest when the two distur- 
bances are linearly stable. In  this case a and b are negative; we still assume that 
a, and b, are positive. The origin (I) is then a stable equilibrium point, while- 
from (19.1 )-I1 and I11 cannot exist. To study IV, let us write a = - c and b = - d 
where b and d are positive. Now if IV is stable, we must have 

b,a,-a,b, < 0. (5.1) 

b,c < a&, da, <cb,. (5 .2 )  

If I V  is to exist, however, this means-from (19.1)- 
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All terms in (5.2) must be positive and we may multiply the inequalities and 
then divide both sides by cd, which yields b,a, < a2bl, in contradiction to (5.1). 
We have therefore shown that non-linear theory verifies the linear prediction 
that the two disturbances considered will decay to zero. 

In  contrast to this, we find an interesting contradiction to linear theory by 
considering the interaction of a linearly stable disturbance with a linearly un- 
stable disturbance. Suppose b > 0 and a < 0. (Modifications for b < 0,  a > 0 
are obvious.) Then I11 cannot exist (A alone cannot prevail) as we would guess. 

t A 

PIGTJRE 3. A linearly stable disturbance brought into a mixed equilibrium state on inter- 
action with a linearly unstable disturbance. 

From (4.3), I1 exists but, from (4.4), it will not be stable if ab,-a2b > 0. (For 
this it is clearly necessary that a2 be negative.) Now if I1 is unstable (I1 will then 
be a saddle point) it is perfectly possible for I V  to exist and be a stable node. 
The situation is depicted in figure 3. A pure A disturbance decays and a pure B 
disturbance grows to finite amplitude, but a combination of both will approach 
a mixed state containing a portion of linearly stable A as well as a portion of 
linearly unstable B. What happens is that although A at first decays, the growth 
of B changes the growth rate of A ,  ultimately forcing A to grow again. With 
this in mind, a glance at (2.15) shows again why it is necessary that a2 be negative. 

The situation just described may have more than academic interest. Lin 
(1955, p. 138) has pointed out that the behaviour of damped solutions to the 
linearized instability equations for parallel flows ‘closely resembles the structure 
of turbulence ’ in that both high oscillatory and slowly varying regions are simul- 
taneously present. This resemblance may be coincidental, but it is possible 
that in certain circumstances a non-linear mechanism like that just illustrated 
would, in the course of transition to turbulence, cause these initially damped 
disturbances to grow to a significant amplitude. 
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Further clarification of how the changing amplitude of one disturbance can 
affect the growth rate of another is found by looking for an approximate solution 
of (2.15)with IBI < IAI. WeneglecttheB2termscomparedtotheA2terms,which 
uncouples the equations. The solution turns out to be 

A = eat[Cl + (a,/a) e2d1-4, B = Czebf[C, + (a,/.) e2&]-@’2ai), 

where C, and C, are arbitrary constants. In  this approximation, then, A is un- 
affected by B. B grows like exp (bt) at first but later, under the influence of A ,  
behaves like exp ((b - ab,/a,) t }  in agreement with ( 4 . 4 ~ ) .  

In  concluding this section, we note that when a, and b, are negative none of the 
equilibrium points 11, I11 and IV are stable. If a and b are negative, all distur- 
bances A and B of sufficiently small magnitude decay to A = B = 0 (so do large 
disturbances near A = f B if 11. and I11 are both saddle points and I V  does not 
exist.) In  all other situations A and B grow without bound according to (2.15)) 
so higher-order terms must be taken into account. 

6. The amplitude functions in the present case 
We now apply the general results of the previous two sections to the situation 

under investigation here. The formulas for a,, a2, b,, and b2 have beengiven, so 
that in any particular case we can in principle determine exactly what will 
happen. We have a, = b, = y, which means that a single disturbance definitely 
equilibrates as our analysis requires. The expressions for a, and b, are so compli- 
ated, however, that i t  is best to  consider some special cases. 

Case 1 : a - p positive and small. This would occur for any two unstable waves 
when 9 is only slightly greater than gC. In  the present context, as explained 
at the end of $2, this is the most important case physically. Here a, = b, = 2y, 
approximately, when we neglect 01 - ,8 compared to 1. We can now state the sta- 
bility results in terms of a quantity p, 

/C = (9-9J/(9-9j) = a/b. (5.3) 

For 0 < p < 2, I1 is stable. For p > 4, I11 is stable. For 4 < p < 2, both I1 and 
I11 are stable so that we have the case of figure 2. For all positive p, either I1 
or I11 is stable so IV cannot occur. 

Case 2: p < a and p2 < 1. This begins to be a good approximation when the 
Rayleigh number is twice the critical value. Taking advantage of the approxi- 
mate equality of c~-~(aZ + 1)3 and p-2((pz + l ) 3  x p-2 to eliminate p, we find 

b, = yK-l(l+qJ, a2 = yK(l+q2), 

[(a2 + 4)3 - (a2 + 1 )31 q1 = q ( a 2  + 112 + (a2 + 4121 + [2a4 - 3(a2 + 1131 a-1 

[(a2+4)3-(a2+ 1)31q2 = ( a 2 +  1)2[(a2+4)2-a2]+(~+ 1)3(2t1.2+3)V-1 

- [3a2(a2 + 1) (a2+ 4)] g-’, 

+a2(a2+1)  (a2+3) (O12+4)cT-2. 

ConsequentlyII,III,andIVarestableifb(,u- 1 -q2), b ( l  -p-pql)andq,+q,+qlq, 
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are respectively negative. The coefficient qz is always positive which favours the 
stability of I1 ( A  = 0, B $: 0). On the other hand, q1 changes from positive to 
negative as the Prandtl number cr decreases. This occurs for cr between 1 and 3, 
the exact value depending on a. A negative q1 favours the instability of I1 and 
the appearance of B in conjunction with A even though B is stable. 

Case 3: p2 = 4, a2 = 1. This is an intermediate case with values of a and p 
appropriate for 92’ z 8. The qualitiative conclusions turn out to be about the 
same as case 2. 

It is not prudent to draw refined conclusions from our idealized model (see 
the concluding remarks in Segel & Stuart 1962) and, as discussed above, special 
caution is necessary when 92 - (92Jmh is not small. It may be significant, however, 
that since qa is always positive but q1 is not, a shorter wavelength disturbance 
appears less apt to prevail than a longer. This probably reflects the fact that more 
energy is dissipated at  shorter wavelengths. Also, it  is possible but unlikely that 
mixed equilibrium states can occur, perhaps even as the result of a linearly stable 
disturbance growing under the influence of a linearly unstable disturbance. If 
mixed equilibrium states do occur the Rayleigh number will be somewhat above 
the critical value and the Prandtl number will probably be small. As explained 
in the Appendix the appearance of a mixed equilibrium state may be closely 
linked with transition to turbulence. It is therefore conjectured that heat-transfer 
experiments with fluids of small Prandtl number, like mercury, might give un- 
usual results. 

Our most compelling conclusions for the thermal problem are for the situation 
when the Rayleigh number is only slightly above its minimum critical value. 
One can say at  once that the interaction of two linearly unstable roll disturbances 
cannot result in a mixed equilibrium state containing both disturbances. Further 
results are given in terms of ,u as defined in (5.3). The quantity ,u is the ratio of the 
differences between the actual Rayleigh number and the critical Rayleigh 
number for each of the two disturbances. Equivalently, neglecting the small 
difference between a and ,8, it  is the ratio of the linear amplification rates. 

When ,u is not too far from unity, two equilibrium states are stable so the state 
finally attained is determined by the initial amplitude ratio of the two dis- 
turbances. (Two stable states were also found by Segel & Stuart 1962 in a related 
problem. In both situations, the stability of the equilibrium states to all possible 
disturbances remains an open question.) If the difference between the linear 
amplification rates is sufficiently great, however, the roll which grows faster 
according to linear theory will attain a finite amplitude and the other roll, while 
unstable by linear theory will ultimately decay to zero. 

During the author’s stay at  the National Physical Laboratory he indirectly 
acquired an extensive training in non-linear stability theory from many con- 
versations with J. T. Stuart and J. Watson. He is happy to record his grati- 
tude for their considerable general assistance as well as for their specific sugges- 
tions concerning this paper. Acknowledgement is due to S. Tsao for drawing the 
figures. Finally, the author is grateful to the Office of Naval Research for en- 
couragement and financial support. 
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Appendix : An alternative to Landau’s successive instability theory of 
transition 

Transition to turbulence is the process by which a fluid flow of determinate 
character changes into a flow which must be described statistically. In  recalling 
Landau’s theory of transition (Landau & Lifschitz 1959, pp. 103-7), let us con- 
sider a basic laminar flow characterized by a dimensionless number N .  As N 
increases, a critical value will be reached and a disturbance to the basic flow 
will begin to grow. Landau conjectures that the mean-squared amplitude of this 
disturbance will level off at  some finite value, thereby giving rise to a new basic 
flow. The process is repeated at  a succession of critical values of N .  Since it is not 
possible to determine precisely when an instability is triggered, each new basic 
flow contains a new arbitrariness in phase. We therefore have a possible transition 
mechanism, because if the phase relationships among many temporally periodic 
components of a flow are unknown then only statistical information can be 
expected. 

During transition, the flow changes from one describable by one or two length 
scales to one whose description is best given by some sort of Fourier integral over 
a continuum of lengths. To explain how this might come about, we observe that 
the complete interaction of disturbances proportional to cos h,x and cos h2z, 
say, gives terms proportional to COB (mh,+nh,)2; m,n = 0, rt 1, f 2,  .... Dis- 
regarding the possibility (of ‘measure zero ’) that h,/h2 is rational, the quantity 
mh, + nh, comes arbitrarily close to any given h for appropriate choices of m 
and n, so it  appears that successive instabilities need introduce only two ‘ration- 
ally independent ’ length scales for each co-ordinate before a Fourier integral 
approach seems more appropriate than a Fourier series approach. It is possible, 
however, that interactions between different wavelengths become progressively 
weaker so rapidly that more different length scales are necessary before the 
Fourier spectrum is effectively filled in. 

Let us consider the ideas just sketched in the light of what we found above 
concerning solutions to the amplitude equations (2.15 a, b) .  Whenever conditions 
are such that a pure equilibrium state appears we have an instability of the Landau 
type, for if only one disturbance ultimately attains a finite equilibrium amplitude 
as each critical dimensionless number is exceeded, then at each stage one new 
phase arbitrariness is introduced. 

On the other hand, the possible appearance of a mixed equilibrium state leads 
to an alternative transition mechanism. If, for example, we consider the inter- 
action of 200 unstable disturbances and assume that a mixed state including all 
of these prevails, the approximation to a continuous spectrum afforded by even 
the first few interaction terms is a good one. Furthermore, since the interactions 
must now be described by a system of 200 differential equations, the solution will 
contain 200 arbitrary phase constants. An alternative to Landau’s model of 
transition is therefore provided by the possibility that above some value of the 
relevant dimensionless number, many unstable infinitesimal disturbances to 
the basic flow will rapidly attain a finite amplitude. In  order to be able to refer to 
it, we shall call this alternative the multipZe equilibrium theory. The multiple 

8 Fluid Mech. 14 
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equilibration might be connected with the instability of the original basic flow 
or of a flow obtained after several successive instabilities. Also, one ought to 
consider the interaction of the continuum of unstable disturbances, rather than 
the 200 mentioned above. On the other hand, if there should happen to be a good 
correlation between observed transition and the theoretical appearance of mixed 
equilibrium states upon the interaction of even two or three disturbances, we 
would feel that the multiple equilibrium theory provided a useful model for 
transition. 

It should be mentioned that one must deal with three-dimensional flows 
before one can hope that either theory will account for any but the earliest phases 
of transition. In  both theories, moreover, the equilibrium amplitudes of the dis- 
turbances considered must be periodic in time since initial phase differences lose 
their importance as steady equilibrium is approached. 

Since stability calculations involving the simplest basic flows are difficult, 
it is hard to see how more than two or three successive instabilities could ever 
be calculated. In  contrast, improving the multiple equilibrium model involves 
adding more disturbances to the same basic flow. If series methods like 
those used above are adequate or could be extended, calculations for an improved 
model should be of the same general type as for a simpler model. More algebra 
would be necessary to handle the increased number of interactions, but this 
might be handled by a computing machine. It is necessary to pick a basic flow, 
if one exists, whose instability leads to multiple equilibration. One possibility 
is the local flow preceding the appearance of a turbulent spot. Compared to 
the series of events in the Landau theory,the multiple equilibration of many 
disturbances to a single basic flow seems particularly well adapted to explain 
the very rapid turbulent burst. 
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